Calibrating Independent Component Analysis with Laplacian Reference for Real-Time EEG Artifact Removal
نویسنده
چکیده
Independent Component Analysis (ICA) has emerged as a necessary preprocessing step when analyzing Electroencephalographic (EEG) data. While many studies reported on the use of ICA for EEG, most of these studies rely on visual inspection of the signal to detect those components that need to be removed from the signal. Little has been done on how to process EEG data in real-time, autonomously, and independent of a human expert inspecting the data. A few attempts have been made in the literature to design standard procedures on the processing of EEG data in real-time environments. To enable standardization to occur, the work and discussion of this paper focus on understanding the impact of different preprocessing steps on the performance of ICA. A proposed cut-off threshold for ICA is demonstrated to produce reliable and sound processing when compared to a Laplacian reference system. A methodology for real-time processing that is simple and efficient is being suggested.
منابع مشابه
Eye Blinks Removal in Single-channel Eeg Using Savitzky-golay Referenced Adaptive Filtering: a Comparison with Independent Component Analysis Method
Eye blink artifact is one of the major problems in electroencephalograph (EEG) signals which mainly affected a frontal channel. A frontal channel often involved in recent applications of portable EEG devices which require a real time processing including for artifact removal. In this paper, we proposed a new referencing method in adaptive filtering for eye blinks removal of a single-channel EEG...
متن کاملEEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملEOG artifact removal using a wavelet neural network
In this paper, we developed a wavelet neural network (WNN) algorithm for electroencephalogram (EEG) artifact. The algorithm combines the universal approximation characteristics of neural networks and the time/frequency property of wavelet transform, where the neural network was trained on a simulated dataset with known ground truths. The contribution of this paper is two-fold. First, many which...
متن کاملArtifact Removal from EEG Using a Multi-objective Independent Component Analysis Model
Independent Component Analysis (ICA) has been widely used for separating artifacts from Electroencephalographic (EEG) signals. Still, a few challenging problems remain. First, in real-time applications, visual inspection of components should be replaced with an automatic identification method or a heuristic for artifacts detection. Second, as we will explain more in the paper, we expect to have...
متن کاملOcular Artifact Removal from EEG Using Stationary Wavelet Enhanced ICA
To analyze EEG accurately, it is necessary to remove artifacts from EEG, which gets coupled with signal at the time of recording and can’t be eliminated at preprocessing stage. Ocular artifact is most obvious artifact in EEG. In this paper, a new method using Stationary Wavelet Enhanced Independent Component Analysis with a novel thresholding, is proposed for ocular artifact removal from EEG. P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014